ubuntuusers.de

Titel:
Unbenannt
Autor:
ppq
Datum:
26. August 2018 12:54
Aktionen:
Code:
1
Sqrt[(-8 2^(2/3) T^2)/(3^(1/3) (27 k^2 L^2 p^4 T^2 + Sqrt[3] Sqrt[243 k^4 L^4 p^8 T^4 + 1024 L^6 p^6 T^6])^(1/3)) + (2^(1/3) (27 k^2 L^2 p^4 T^2 + Sqrt[3] Sqrt[243 k^4 L^4 p^8 T^4 + 1024 L^6 p^6 T^6])^(1/3))/(3^(2/3) L^2 p^2)]/(2 Sqrt[3]) + Sqrt[(8 2^(2/3) T^2)/(3 3^(1/3) (27 k^2 L^2 p^4 T^2 + Sqrt[3] Sqrt[243 k^4 L^4 p^8 T^4 + 1024 L^6 p^6 T^6])^(1/3)) - (2^(1/3) (27 k^2 L^2 p^4 T^2 + Sqrt[3] Sqrt[243 k^4 L^4 p^8 T^4 + 1024 L^6 p^6 T^6])^(1/3))/(3 3^(2/3) L^2 p^2) - (4 k T)/(Sqrt[3] L^2 p Sqrt[(-8 2^(2/3) T^2)/(3^(1/3) (27 k^2 L^2 p^4 T^2 + Sqrt[3] Sqrt[243 k^4 L^4 p^8 T^4 + 1024 L^6 p^6 T^6])^(1/3)) + (2^(1/3) (27 k^2 L^2 p^4 T^2 + Sqrt[3] Sqrt[243 k^4 L^4 p^8 T^4 + 1024 L^6 p^6 T^6])^(1/3))/(3^(2/3) L^2 p^2)])]/2